Product/Service Development

Do-yeon Pi of PiQuant in the Republic of Korea is developing a low-cost spectroscopic device and monitoring system, the Water Scanner, that can be nationally deployed to rapidly detect and map Escherichia coli contamination in drinking water in low-resource settings. Water pollution causes up to 90% of diarrheal diseases, which kill 500,000 children under the age of five each year. Water quality is currently measured using spectroscopic devices that are expensive and time-consuming.

Casey Brown of the University of Massachusetts in the U.S. is building a water distribution network with digital platform to provide affordable access to safe drinking water for poor urban populations. Public water infrastructure in low- and middle-income areas is often poorly maintained and insufficient for rapidly growing cities. This has led to additional water being provided in tankers by private companies, which is expensive and the water quality is often poor.

Alex Riolexus Ario and colleagues at the Uganda National Institute of Public Health will develop a plan that transforms disease surveillance in Uganda by upgrading it to an integrated, real-time, digitized national disease surveillance system that works across the human, animal and environment sectors. Uganda is located in the eco-rich Congo basin and the filovirus and meningitis belts, which increase the risk of infectious disease outbreaks and natural disasters. While electronic tools and reporting are available, they have limited coverage, use, and interoperability across sectors.

Mohamed Alex Vandi and colleagues at the Ministry of Health and Sanitation in Sierra Leone together with Umar N’jai of the University of Sierra Leone will develop a plan to strengthen and integrate the national capacity for disease surveillance in Sierra Leone to better prevent, detect and respond to diseases and public health emergencies. Sierra Leone has a fragile healthcare system, and increasing coordination, human resources, infrastructure and reporting tools would make it less susceptible to epidemic threats.

Sergio Chicumbe and colleagues at the Instituto Nacional de Saúde in Mozambique together with the Ministry of Health and other stakeholders will create a plan for strengthening the national surveillance and response systems established during the COVID-19 pandemic and expanding them to multiple diseases. During the pandemic, they built systems that spanned the public and private sectors to ensure rapid testing and data collection country-wide, as well as data reporting in real-time.

Aamer Ikram and colleagues at the National Institutes of Health in Pakistan will develop a plan for an upgraded and integrated disease surveillance system that detects, reports, investigates and responds to multiple public health threats from communicable diseases like cholera and natural disasters such as floods. The current disease surveillance systems in Pakistan are fragmented and there is no central repository of health information. This hampers data-driven decision-making, which is needed to prevent the spread of disease.

Zhang Dongjing, Zheng Xiaoying, Wu Yu and Wang Gang of Sun Yat-sen University in China together with their international partners Badria El-Sayed, Tellal Ageep, Ammar Hassan and Mohamed Korti all from the National Centre for Research in Sudan, and Jeremy Bouyer, Maiga Hamidou, Hanano Yamada and Adly Abdalla of Insect Pest Control Laboratory in Austria will develop highly specific and environmentally friendly Sterile Insect Technique (SIT) to control outdoor Anopheles mosquitoes.

Weiguo Fang of Zhejiang University and Guoding Zhu of Jiangsu Institute of Parasitic Diseases in China together with their international partner Abdoulaye Diabaté of Institut de Recherche en Sciences de La Santé in Burkina Faso, by referring to the widely used small farmer-operated factories for production of entomopathogenic fungal spores in China, will develop a spore production technology for the transgenic Metarhizium strain, which is cost-effective, of low technological bar and can be easily implemented in low-and middle-income countries and regions.

Xiao-Guang Chen, Zetian Lai and Chunmei Wang of Southern Medical University in China and their international partner Guiyun Yan of the University of California, Irvine in the U.S. will develop new traps that are more attractive to malaria vectors. They will incorporate the new traps with infrared vector detection, automatic recording and wireless transmission technologies, and test the efficacy of the new trap and the automated malaria vector surveillance apparatus both in the laboratory and in the field.