Use of Novel Oligosaccharides For Simultaneous Growth of Keystone Bacteria

David Mills of the University of California, Davis in the U.S. will determine whether specific plant-based oligosaccharide formulations can drive mixed-culture growth of selected strains of intestinal bacteria for the low-cost and efficient production of live biotherapeutics. Microbial colonization in the human gut is important for overall health. It has been shown that oligosaccharides can provide a food niche to specifically enrich key colonizing bacteria, even in the competitive environment of the human gut. They will exploit this to grow multiple strains simultaneously in a controllable, scalable manner. They have recently developed analytical tools to characterize over 1,000 plant polysaccharides. These will be screened using bioinformatics methods and then in vitro to identify optimal oligosaccharide-therapeutic bacteria combinations that can support mixed-culture growth. They will then progress to bioreactor screening of the top candidate combinations. Once established, the live biotherapeutics will be formulated with their paired oligosaccharides for synbiotic application that may enable them to more readily colonize the human gut.

Grant ID
OPP1211902
Show on Hub
On
Show on Spoke
On
Follow-on Funding
Off
Lead Funding Organization
Principal Investigator
Individual Funder Information
Funding Organization
Funding Amount (in original currency)
100000.00
Funding Currency
USD
Funding Amount (in USD)
100000.00
Project Type
Project Primary Sector
Funding Date Range
-
Funding Total (In US dollars)
100000.00
Co-Funded
False